Search results
Results From The WOW.Com Content Network
Buffers typically consist of a pair of compounds in solution, one of which is a weak acid and the other a weak base. [13] The most abundant buffer in the ECF consists of a solution of carbonic acid (H 2 CO 3), and the bicarbonate (HCO − 3) salt of, usually, sodium (Na +). [5] Thus, when there is an excess of OH −
The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H 2 CO 3), bicarbonate ion (HCO − 3 ), and carbon dioxide (CO 2 ) in order to maintain pH in the blood and duodenum , among other tissues, to support proper metabolic function. [ 1 ]
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/) is the state of steady internal physical and chemical conditions maintained by living systems. [1] This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance , being kept ...
Intracellular pH is typically lower than extracellular pH due to lower concentrations of HCO 3 −. [9] A rise of extracellular (e.g., serum) partial pressure of carbon dioxide (pCO 2) above 45 mmHg leads to formation of carbonic acid, which causes a decrease of pH i as it dissociates: [10]
For alkaline buffers, a strong base such as sodium hydroxide may be added. Alternatively, a buffer mixture can be made from a mixture of an acid and its conjugate base. For example, an acetate buffer can be made from a mixture of acetic acid and sodium acetate. Similarly, an alkaline buffer can be made from a mixture of the base and its ...
The lungs contribute to acid-base homeostasis by regulating carbon dioxide (CO 2) concentration. The kidneys have two very important roles in maintaining the acid-base balance: to reabsorb and regenerate bicarbonate from urine, and to excrete hydrogen ions and fixed acids (anions of acids) into urine.
Any condition that changes the balance of one of the buffer systems, also changes the balance of all the others because the buffer systems actually buffer one another by shifting hydrogen ions back and forth from one to the other. The isohydric principle has special relevance to in vivo biochemistry where multiple acid/ base pairs are in ...
In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications. For example, besides buffers being used in lab processes, human blood acts as a buffer to maintain pH.