Search results
Results From The WOW.Com Content Network
The climate and ecology of different locations on the globe naturally separate into life zones, depending on elevation, latitude, and location. The generally strong dependency on elevation is known as altitudinal zonation: the average temperature of a location decreases as the elevation increases.
Orographic lift occurs when an air mass is forced from a low elevation to a higher elevation as it moves over rising terrain. As the air mass gains altitude it quickly cools down adiabatically, which can raise the relative humidity to 100% and create clouds and, under the right conditions, precipitation. [citation needed]
The climate surrounding the volcano constrains the impact of the eruption. Models of eruptions that treat climatic variables as controls and hold eruption intensity constant predict particulate emissions, such as volcanic ash and other pyroclastic debris ejected into the atmosphere, in the tropics to reach higher altitudes than eruptions in ...
Heating of solids, sunlight and shade in different altitudinal zones (Northern hemisphere) [5] A variety of environmental factors determines the boundaries of altitudinal zones found on mountains, ranging from direct effects of temperature and precipitation to indirect characteristics of the mountain itself, as well as biological interactions of the species.
This is usually expressed in terms of the elevation, slope, and orientation of terrain features. Terrain affects surface water flow and distribution. Over a large area, it can affect weather and climate patterns. Bathymetry is the study of underwater relief, while hypsometry studies terrain relative to sea level.
Alpine climate is the average weather for the alpine tundra. The climate becomes colder when reaching higher elevations—this characteristic is described by the lapse rate of air: air tends to get colder as it rises, since it expands. The dry adiabatic lapse rate is 10 °C per km (5.5 °F per 1000 ft) of elevation or altitude.
The Alps contain a number of different kinds of climate zones, by elevation. These zones can be described by the Köppen climate classification, and also correspond to the biotic zones of the Alps. [3] Up to approximately 1,050 metres (3,440 ft) of elevation, the climate is classified as oceanic or Cfb under the Köppen system. [3]
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).