When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Extrapolation - Wikipedia

    en.wikipedia.org/wiki/Extrapolation

    Linear extrapolation means creating a tangent line at the end of the known data and extending it beyond that limit. Linear extrapolation will only provide good results when used to extend the graph of an approximately linear function or not too far beyond the known data.

  3. Modified Richardson iteration - Wikipedia

    en.wikipedia.org/wiki/Modified_Richardson_iteration

    Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method. We seek the solution to a set of linear equations, expressed in matrix terms as =.

  4. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.

  5. Richardson extrapolation - Wikipedia

    en.wikipedia.org/wiki/Richardson_extrapolation

    In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value = (). In essence, given the value of A ( h ) {\displaystyle A(h)} for several values of h {\displaystyle h} , we can estimate A ∗ {\displaystyle A^{\ast }} by extrapolating the ...

  6. Regression analysis - Wikipedia

    en.wikipedia.org/wiki/Regression_analysis

    Prediction outside this range of the data is known as extrapolation. Performing extrapolation relies strongly on the regression assumptions. The further the extrapolation goes outside the data, the more room there is for the model to fail due to differences between the assumptions and the sample data or the true values.

  7. MUSCL scheme - Wikipedia

    en.wikipedia.org/wiki/MUSCL_scheme

    An example of MUSCL type left and right state linear-extrapolation. MUSCL based numerical schemes extend the idea of using a linear piecewise approximation to each cell by using slope limited left and right extrapolated states. This results in the following high resolution, TVD discretisation scheme,

  8. Newton polynomial - Wikipedia

    en.wikipedia.org/wiki/Newton_polynomial

    For that purpose, the divided-difference formula and/or its x 0 point should be chosen so that the formula will use, for its linear term, the two data points between which the linear interpolation of interest would be done. The divided difference formulas are more versatile, useful in more kinds of problems.

  9. Aitken's delta-squared process - Wikipedia

    en.wikipedia.org/wiki/Aitken's_delta-squared_process

    In numerical analysis, Aitken's delta-squared process or Aitken extrapolation is a series acceleration method used for accelerating the rate of convergence of a sequence. It is named after Alexander Aitken, who introduced this method in 1926. [1] It is most useful for accelerating the convergence of a sequence that is converging linearly.