Search results
Results From The WOW.Com Content Network
The slant height of a right circular cone is the distance from any point on the circle of its base to the apex via a line segment along the surface of the cone. It is given by r 2 + h 2 {\displaystyle {\sqrt {r^{2}+h^{2}}}} , where r {\displaystyle r} is the radius of the base and h {\displaystyle h} is the height.
the azimuthal angle φ, which is the angle of rotation of the radial line around the polar axis. [b] (See graphic regarding the "physics convention".) Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates.
Labeled "r" is the radius of the circular base. Labeled "h" is the height, from center of base to apex, of the cone. Labeled "c", is the slant height of the cone. Labeled "θ" is the angle between the height and the slant height.
A circle of finite radius has an infinitely distant directrix, while a pair of lines of finite separation have an infinitely distant focus. Alternatively, one can define a conic section purely in terms of plane geometry: it is the locus of all points P whose distance to a fixed point F (called the focus ) is a constant multiple e (called the ...
The sphere has a radius of 1, and so the side lengths and lower case angles are equivalent (see arc length). The angle A (respectively, B and C ) may be regarded either as the dihedral angle between the two planes that intersect the sphere at the vertex A , or, equivalently, as the angle between the tangents of the great circle arcs where they ...
Angle AOB is a central angle. A central angle is an angle whose apex (vertex) is the center O of a circle and whose legs (sides) are radii intersecting the circle in two distinct points A and B. Central angles are subtended by an arc between those two points, and the arc length is the central angle of a circle of radius one (measured in radians). [1]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
One radian is defined as the angle at the center of a circle in a plane that subtends an arc whose length equals the radius of the circle. [6] More generally, the magnitude in radians of a subtended angle is equal to the ratio of the arc length to the radius of the circle; that is, =, where θ is the magnitude in radians of the subtended angle, s is arc length, and r is radius.