Ads
related to: factoring exponents examples problems worksheet 5th- Pricing Plans
View the Pricing Of Our Plans And
Select the One You Need.
- Explore Activities
Browse Through Our Video Gallery To
Get Insights About DIY Activities.
- Teachers Try it Free
Get 30 days access for free.
No credit card or commitment needed
- K-8 Math Videos & Lessons
Used in 20,000 Schools
Loved by Students & Teachers
- Grades 3-5 Math lessons
Get instant access to hours of fun
standards-based 3-5 videos & more.
- Grades K-2 Math Lessons
Get instant access to hours of fun
standards-based K-2 videos & more.
- Pricing Plans
Search results
Results From The WOW.Com Content Network
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n . Fifth powers are also formed by multiplying a number by its fourth power , or the square of a number by its cube .
If two or more factors of a polynomial are identical, then the polynomial is a multiple of the square of this factor. The multiple factor is also a factor of the polynomial's derivative (with respect to any of the variables, if several). For univariate polynomials, multiple factors are equivalent to multiple roots (over a suitable extension field).
For example, 3 × 5 is an integer factorization of 15, and (x – 2)(x + 2) is a polynomial factorization of x 2 – 4. Factorization is not usually considered meaningful within number systems possessing division , such as the real or complex numbers , since any x {\displaystyle x} can be trivially written as ( x y ) × ( 1 / y ) {\displaystyle ...
For example, 15 is a composite number because 15 = 3 · 5, but 7 is a prime number because it cannot be decomposed in this way. If one of the factors is composite, it can in turn be written as a product of smaller factors, for example 60 = 3 · 20 = 3 · (5 · 4) .
The entry 4+2i = −i(1+i) 2 (2+i), for example, could also be written as 4+2i= (1+i) 2 (1−2i). The entries in the table resolve this ambiguity by the following convention: the factors are primes in the right complex half plane with absolute value of the real part larger than or equal to the absolute value of the imaginary part.
For example, 3 5 = 3 · 3 · 3 · 3 · 3 = 243. The base 3 appears 5 times in the multiplication, because the exponent is 5. Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5".