Ad
related to: 1.25 as a fraction simplified formula example with steps worksheet
Search results
Results From The WOW.Com Content Network
The following list includes the continued fractions of some constants and is sorted by their representations. Continued fractions with more than 20 known terms have been truncated, with an ellipsis to show that they continue. Rational numbers have two continued fractions; the version in this list is the shorter one.
By consequence, we may get, for example, three different values for the fractional part of just one x: let it be −1.3, its fractional part will be 0.7 according to the first definition, 0.3 according to the second definition, and −0.3 according to the third definition, whose result can also be obtained in a straightforward way by
Fractions are written as two integers, the numerator and the denominator, with a dividing bar between them. The fraction m / n represents m parts of a whole divided into n equal parts. Two different fractions may correspond to the same rational number; for example 1 / 2 and 2 / 4 are equal, that is:
[1] [2] Fractions are collected based on differences in a specific property of the individual components. A common trait in fractionations is the need to find an optimum between the amount of fractions collected and the desired purity in each fraction. Fractionation makes it possible to isolate more than two components in a mixture in a single run.
As another example, φ(1) = 1 since for n = 1 the only integer in the range from 1 to n is 1 itself, and gcd(1, 1) = 1. Euler's totient function is a multiplicative function , meaning that if two numbers m and n are relatively prime, then φ ( mn ) = φ ( m ) φ ( n ) .
For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution).
Logarithms can be used to make calculations easier. For example, two numbers can be multiplied just by using a logarithm table and adding. These are often known as logarithmic properties, which are documented in the table below. [2] The first three operations below assume that x = b c and/or y = b d, so that log b (x) = c and log b (y) = d.
In epidemiology, attributable fraction among the exposed (AF e) is the proportion of incidents in the exposed group that are attributable to the risk factor. The term attributable risk percent among the exposed is used if the fraction is expressed as a percentage. [ 1 ]