Ad
related to: niels bohr quantum mechanics
Search results
Results From The WOW.Com Content Network
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science , insofar as the disagreements—and the outcome of Bohr's version of quantum mechanics becoming the prevalent view—form the root of ...
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. [1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously. For example, position and momentum or wave and particle properties.
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics principally attributed to Niels Bohr and Werner Heisenberg. It is one of the oldest attitudes towards quantum mechanics, as features of it date to the development of quantum mechanics during 1925–1927, and it remains one of the most commonly taught.
The Niels Bohr Institute in Copenhagen, which was a focal point for researchers in quantum mechanics and related subjects in the 1920s and 1930s. Most of the world's best known theoretical physicists spent time there.
In physics, a correspondence principle is any one of several premises or assertions about the relationship between classical and quantum mechanics.The physicist Niels Bohr coined the term in 1920 [1] during the early development of quantum theory; he used it to explain how quantized classical orbitals connect to quantum radiation. [2]
Niels Bohr publishes his 1913 paper of the Bohr model of the atom. [16] Ștefan Procopiu publishes a theoretical paper with the correct value of the electron's magnetic dipole moment μ B. [17] Niels Bohr obtains theoretically the value of the electron's magnetic dipole moment μ B as a consequence of his atom model
When Albert Einstein introduced the light quantum in 1905, there was much resistance from the scientific community.However, when in 1923, the Compton effect showed the results could be explained by assuming the light beam behaves as light-quanta and that energy and momentum are conserved, Niels Bohr was still resistant against quantized light, even repudiating it in his 1922 Nobel Prize lecture.