Search results
Results From The WOW.Com Content Network
If an inverse function exists for a given function f, then it is unique. [13] ... Specifically, if f is an invertible function with domain X and codomain Y, ...
For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).
In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...
A function is bijective if and only if it is invertible; that is, a function : is bijective if and only if there is a function :, the inverse of f, such that each of the two ways for composing the two functions produces an identity function: (()) = for each in and (()) = for each in .
The traditional notations used in the previous section do not distinguish the original function : from the image-of-sets function : (); likewise they do not distinguish the inverse function (assuming one exists) from the inverse image function (which again relates the powersets). Given the right context, this keeps the notation light and ...
Given its domain and its codomain, a function is uniquely represented by the set of all pairs (x, f (x)), called the graph of the function, a popular means of illustrating the function. [note 1] [4] When the domain and the codomain are sets of real numbers, each such pair may be thought of as the Cartesian coordinates of a point in the plane.
For a function to have an inverse, it must be one-to-one.If a function is not one-to-one, it may be possible to define a partial inverse of by restricting the domain. For example, the function = defined on the whole of is not one-to-one since = for any .
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.