Search results
Results From The WOW.Com Content Network
Type 1 is characterised by congenital sensorineural hearing loss, pigmentary deficiencies of the hair such as a white lock of hair in the front-centre of the head or premature greying, pigmentary deficiencies of the eyes such as different-coloured eyes (complete heterochromia iridum), multiple colours in an eye (sectoral heterochromia iridum) or brilliant blue eyes, patches of skin ...
Aβ was found manipulating the level of nicotine in the brain along with the MAP kinase, another signaling receptor, to cause cell death. Another chemical in the brain that Aβ regulates is JNK; this chemical halts the extracellular signal-regulated kinases (ERK) pathway, which normally functions as memory control in the brain. As a result ...
Brain trauma or stroke can cause ischemia, in which blood flow is reduced to inadequate levels. Ischemia is followed by accumulation of glutamate and aspartate in the extracellular fluid, causing cell death, which is aggravated by lack of oxygen and glucose.
Heterochromia is a variation in coloration most often used to describe color differences of the iris, but can also be applied to color variation of hair [1] or skin. Heterochromia is determined by the production, delivery, and concentration of melanin (a pigment). It may be inherited, or caused by genetic mosaicism, chimerism, disease, or ...
The risk of death from an intraparenchymal bleed in traumatic brain injury is especially high when the injury occurs in the brain stem. [48] Intraparenchymal bleeds within the medulla oblongata are almost always fatal, because they cause damage to cranial nerve X, the vagus nerve, which plays an important role in blood circulation and breathing ...
Apoptosis is the programmed cell death of superfluous or potentially harmful cells in the body. It is an energy-dependent process mediated by proteolytic enzymes called caspases, which trigger cell death through the cleaving of specific proteins in the cytoplasm and nucleus. [13] The dying cells shrink and condense into apoptotic bodies.
The symptoms of CJD are caused by the progressive death of the brain's nerve cells, which are associated with the build-up of abnormal prion proteins forming in the brain. When brain tissue from a person with CJD is examined under a microscope , many tiny holes can be seen where the nerve cells have died.
Brain death is used as an indicator of legal death in many jurisdictions, [6] but it is defined inconsistently and often confused by the public. [7] Various parts of the brain may keep functioning when others do not anymore, and the term "brain death" has been used to refer to various combinations.