When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Kinetic energy - Wikipedia

    en.wikipedia.org/wiki/Kinetic_energy

    In classical mechanics, the kinetic energy of a point object (an object so small that its mass can be assumed to exist at one point), or a non-rotating rigid body depends on the mass of the body as well as its speed. The kinetic energy is equal to 1/2 the product of the mass and the square of the speed. In formula form:

  3. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    The general formula for the escape velocity of an object at a distance r from the center of a planet with mass M is [12] = =, where G is the gravitational constant and g is the gravitational acceleration. The escape velocity from Earth's surface is about 11 200 m/s, and is irrespective of the direction of the object.

  4. Escape velocity - Wikipedia

    en.wikipedia.org/wiki/Escape_velocity

    Escape speed at a distance d from the center of a spherically symmetric primary body (such as a star or a planet) with mass M is given by the formula [2] [3] = = where: G is the universal gravitational constant (G ≈ 6.67 × 10 −11 m 3 ⋅kg1 ⋅s −2 ‍ [4])

  5. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  7. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    The momentum of the body is 1 kg·m·s −1. The moment of inertia is 1 kg·m 2. The angular momentum is 1 kg·m 2 ·s −1. The kinetic energy is 0.5 joule. The circumference of the orbit is 2 π (~6.283) metres. The period of the motion is 2 π seconds. The frequency is (2 π) −1 hertz.

  8. AOL latest headlines, entertainment, sports, articles for business, health and world news.

  9. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    In an inertial reference frame, the vector sum of the forces F on an object is equal to the mass m of that object multiplied by the acceleration a of the object: =. If the resultant force F → {\displaystyle {\vec {F}}} acting on a body or an object is not equal to zero, the body will have an acceleration a {\displaystyle a} that is in the ...