When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    A parabolic segment is the region bounded by a parabola and line. To find the area of a parabolic segment, Archimedes considers a certain inscribed triangle. The base of this triangle is the given chord of the parabola, and the third vertex is the point on the parabola such that the tangent to the parabola at that point is parallel to the chord.

  3. Cavalieri's quadrature formula - Wikipedia

    en.wikipedia.org/wiki/Cavalieri's_quadrature_formula

    The term "quadrature" is a traditional term for area; the integral is geometrically interpreted as the area under the curve y = x n. Traditionally important cases are y = x 2, the quadrature of the parabola, known in antiquity, and y = 1/x, the quadrature of the hyperbola, whose value is a logarithm.

  4. Parabola - Wikipedia

    en.wikipedia.org/wiki/Parabola

    The area enclosed by a parabola ... the parabola with equation ... and in calculations the second-degree polynomial formula of a parabola is used. [20] [21] Under ...

  5. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...

  6. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    Archimedes in his The Quadrature of the Parabola used the sum of a geometric series to compute the area enclosed by a parabola and a straight line. Archimedes' theorem states that the total area under the parabola is ⁠ 4 / 3 ⁠ of the area of the blue triangle. His method was to dissect the area into infinite triangles as shown in the ...

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.

  8. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;

  9. Arc length - Wikipedia

    en.wikipedia.org/wiki/Arc_length

    In 1659 van Heuraet published a construction showing that the problem of determining arc length could be transformed into the problem of determining the area under a curve (i.e., an integral). As an example of his method, he determined the arc length of a semicubical parabola, which required finding the area under a parabola. [9]