When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Linear time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Linear_time-invariant_system

    The defining properties of any LTI system are linearity and time invariance.. Linearity means that the relationship between the input () and the output (), both being regarded as functions, is a linear mapping: If is a constant then the system output to () is (); if ′ is a further input with system output ′ then the output of the system to () + ′ is () + ′ (), this applying for all ...

  3. Spacetime - Wikipedia

    en.wikipedia.org/wiki/Spacetime

    In physics, spacetime, also called the space-time continuum, is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects, such as how different observers perceive where and when events ...

  4. Time-invariant system - Wikipedia

    en.wikipedia.org/wiki/Time-invariant_system

    If a system is time-invariant then the system block commutes with an arbitrary delay. If a time-invariant system is also linear, it is the subject of linear time-invariant theory (linear time-invariant) with direct applications in NMR spectroscopy, seismology, circuits, signal processing, control theory, and other technical areas.

  5. Autonomous system (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Autonomous_system...

    An autonomous system is a system of ordinary differential equations of the form = (()) where x takes values in n-dimensional Euclidean space; t is often interpreted as time. It is distinguished from systems of differential equations of the form = ((),) in which the law governing the evolution of the system does not depend solely on the system's ...

  6. State-space representation - Wikipedia

    en.wikipedia.org/wiki/State-space_representation

    The state controllability condition implies that it is possible – by admissible inputs – to steer the states from any initial value to any final value within some finite time window. A continuous time-invariant linear state-space model is controllable if and only if ⁡ [] =, where rank is the number of linearly independent rows in a matrix ...

  7. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    For the simplest example of a continuous, LTI system, the row dimension of the state space expression ˙ = + determines the interval; each row contributes a vector in the state space of the system. If there are not enough such vectors to span the state space of x {\displaystyle \mathbf {x} } , then the system cannot achieve controllability.

  8. Spacetime diagram - Wikipedia

    en.wikipedia.org/wiki/Spacetime_diagram

    The coordinate system would collapse, in concordance with the fact that due to time dilation, time would effectively stop passing for them. These considerations show that the speed of light as a limit is a consequence of the properties of spacetime, and not of the properties of objects such as technologically imperfect space ships.

  9. Time-variant system - Wikipedia

    en.wikipedia.org/wiki/Time-variant_system

    A system undergoing slow time variation in comparison to its time constants can usually be considered to be time invariant: they are close to time invariant on a small scale. An example of this is the aging and wear of electronic components, which happens on a scale of years, and thus does not result in any behaviour qualitatively different ...