Search results
Results From The WOW.Com Content Network
Lactic acidosis refers to the process leading to the production of lactate by anaerobic metabolism. It increases hydrogen ion concentration tending to the state of acidemia or low pH . The result can be detected with high levels of lactate and low levels of bicarbonate .
A high anion gap indicates increased concentrations of unmeasured anions by proxy. Elevated concentrations of unmeasured anions like lactate, beta-hydroxybutyrate, acetoacetate, PO 3− 4, and SO 2− 4, which rise with disease or intoxication, cause loss of HCO − 3 due to bicarbonate's activity as a buffer (without a concurrent increase in ...
Characteristic features include developmental delay and a buildup of lactic acid in the blood (lactic acidosis). Increased acidity in the blood can lead to vomiting, abdominal pain, extreme tiredness , muscle weakness, and difficulty breathing. In some cases, episodes of lactic acidosis are triggered by an illness or periods without food.
High anion gap metabolic acidosis is a form of metabolic acidosis characterized by a high anion gap (a medical value based on the concentrations of ions in a patient's serum). Metabolic acidosis occurs when the body produces too much acid , or when the kidneys are not removing enough acid from the body.
Metabolic acidosis can lead to acidemia, which is defined as arterial blood pH that is lower than 7.35. [6] Acidemia and acidosis are not mutually exclusive – pH and hydrogen ion concentrations also depend on the coexistence of other acid-base disorders; therefore, pH levels in people with metabolic acidosis can range from low to high.
When lactate levels are elevated, blood-borne lactic acid competes for the same kidney tubular transport mechanism as urate, limiting the rate which urate can be cleared by the kidneys into the urine. If present, increased purine catabolism is an additional contributing factor. Uric acid levels of 6 to 12 mg/dl (530 to 1060 umol/L) are common ...
Lactic acidosis is a physiological condition characterized by accumulation of lactate (especially L-lactate), with formation of an excessively high proton concentration [H +] and correspondingly low pH in the tissues, a form of metabolic acidosis.
Metabolic acidosis is compensated for in the lungs, as increased exhalation of carbon dioxide promptly shifts the buffering equation to reduce metabolic acid. This is a result of stimulation to chemoreceptors , which increases alveolar ventilation , leading to respiratory compensation, otherwise known as Kussmaul breathing (a specific type of ...