Search results
Results From The WOW.Com Content Network
Many cancers exhibit mutations in the p53 gene, but this mutation can only be detected through extensive DNA sequencing. Studies have shown that cells with p53 mutations have significantly lower levels of PUMA, making it a good candidate for a protein marker of p53 mutations, providing a simpler method for testing for p53 mutations. [44]
p53, also known as Tumor protein P53, cellular tumor antigen p53 (UniProt name), or transformation-related protein 53 (TRP53) is a regulatory protein that is often mutated in human cancers. The p53 proteins (originally thought to be, and often spoken of as, a single protein) are crucial in vertebrates , where they prevent cancer formation. [ 5 ]
The addition of agents such as Herceptin, Iressa, or Gleevec works to stop cells from cycling and causes apoptosis activation by blocking growth and survival signaling further upstream. Finally, adding p53-MDM2 complexes displaces p53 and activates the p53 pathway, leading to cell cycle arrest and apoptosis. Many different methods can be used ...
The expression of this gene is induced in a p53-dependent manner in response to various environmental stresses. While being induced by tumor suppressor protein TP53/p53 , this phosphatase negatively regulates the activity of p38 MAP kinase (MAPK/p38) through which it reduces the phosphorylation of p53, and in turn suppresses p53-mediated ...
Mdm2 has been identified as a p53 interacting protein that represses p53 transcriptional activity. Mdm2 achieves this repression by binding to and blocking the N-terminal trans-activation domain of p53. Mdm2 is a p53 responsive gene—that is, its transcription can be activated by p53.
Mutated p53 is involved in many human cancers, of the 6.5 million cancer diagnoses each year about 37% are connected to p53 mutations. [30] This makes it a popular target for new cancer therapies. Homozygous loss of p53 is found in 65% of colon cancers, 30–50% of breast cancers, and 50% of lung cancers.
Intragenic suppression results from suppressor mutations that occur in the same gene as the original mutation. In a classic study, Francis Crick (et al.) used intragenic suppression to study the fundamental nature of the genetic code. From this study it was shown that genes are expressed as non-overlapping triplets . [1]
The disease causes motor neurons to degenerate, which eventually leads to neuron death and muscular degeneration. [66] Hundreds of mutations in the Cu/Zn superoxide dismutase (SOD1) gene have been found to cause ALS. [67] Gene silencing has been used to knock down the SOD1 mutant that is characteristic of ALS.