Search results
Results From The WOW.Com Content Network
Furthermore, if the Jacobian determinant at p is positive, then f preserves orientation near p; if it is negative, f reverses orientation. The absolute value of the Jacobian determinant at p gives us the factor by which the function f expands or shrinks volumes near p; this is why it occurs in the general substitution rule. The Jacobian ...
The strong real Jacobian conjecture was that a real polynomial map with a nowhere vanishing Jacobian determinant has a smooth global inverse. That is equivalent to asking whether such a map is topologically a proper map, in which case it is a covering map of a simply connected manifold, hence invertible. Sergey Pinchuk constructed two variable ...
If it is true, the Jacobian conjecture would be a variant of the inverse function theorem for polynomials. It states that if a vector-valued polynomial function has a Jacobian determinant that is an invertible polynomial (that is a nonzero constant), then it has an inverse that is also a polynomial function. It is unknown whether this is true ...
He was also one of the early founders of the theory of determinants. [9] In particular, he invented the Jacobian determinant formed from the n 2 partial derivatives of n given functions of n independent variables, which plays an important part in changes of variables in multiple integrals, and in many analytical investigations. [3]
Difficult integrals may also be solved by simplifying the integral using a change of variables given by the corresponding Jacobian matrix and determinant. [1] Using the Jacobian determinant and the corresponding change of variable that it gives is the basis of coordinate systems such as polar, cylindrical, and spherical coordinate systems.
In matrix calculus, Jacobi's formula expresses the derivative of the determinant of a matrix A in terms of the adjugate of A and the derivative of A. [1]If A is a differentiable map from the real numbers to n × n matrices, then
Determinants occur throughout mathematics. For example, a matrix is often used to represent the coefficients in a system of linear equations, and determinants can be used to solve these equations (Cramer's rule), although other methods of solution are computationally much more
commutative algebra: n/a: Hopf conjectures: geometry: Heinz Hopf: 476 Ibragimov–Iosifescu conjecture for φ-mixing sequences: probability theory: Ildar Ibragimov, ro:Marius Iosifescu: Invariant subspace problem: functional analysis: n/a: 2120 Jacobian conjecture: polynomials: Carl Gustav Jacob Jacobi (by way of the Jacobian determinant) 2860 ...