When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Longest increasing subsequence - Wikipedia

    en.wikipedia.org/wiki/Longest_increasing_subsequence

    The longest increasing subsequence problem is closely related to the longest common subsequence problem, which has a quadratic time dynamic programming solution: the longest increasing subsequence of a sequence is the longest common subsequence of and , where is the result of sorting.

  3. Maximum subarray problem - Wikipedia

    en.wikipedia.org/wiki/Maximum_subarray_problem

    For example, for the array of values [−2, 1, −3, 4, −1, 2, 1, −5, 4], the contiguous subarray with the largest sum is [4, −1, 2, 1], with sum 6. Some properties of this problem are: If the array contains all non-negative numbers, then the problem is trivial; a maximum subarray is the entire array.

  4. Range query (computer science) - Wikipedia

    en.wikipedia.org/wiki/Range_query_(computer_science)

    Given a function that accepts an array, a range query (,) on an array = [,..,] takes two indices and and returns the result of when applied to the subarray [, …,].For example, for a function that returns the sum of all values in an array, the range query ⁡ (,) returns the sum of all values in the range [,].

  5. Shellsort - Wikipedia

    en.wikipedia.org/wiki/Shellsort

    The next pass, 3-sorting, performs insertion sort on the three subarrays (a 1, a 4, a 7, a 10), (a 2, a 5, a 8, a 11), (a 3, a 6, a 9, a 12). The last pass, 1-sorting, is an ordinary insertion sort of the entire array (a 1,..., a 12). As the example illustrates, the subarrays that Shellsort operates on are initially short; later they are longer ...

  6. Fisher–Yates shuffle - Wikipedia

    en.wikipedia.org/wiki/Fisher–Yates_shuffle

    This change gives the following algorithm (for a zero-based array). -- To shuffle an array a of n elements (indices 0..n-1): for i from n−1 down to 1 do j ← random integer such that 0 ≤ j ≤ i exchange a[j] and a[i] An equivalent version which shuffles the array in the opposite direction (from lowest index to highest) is:

  7. Subset sum problem - Wikipedia

    en.wikipedia.org/wiki/Subset_sum_problem

    Given the two sorted lists, the algorithm can check if an element of the first array and an element of the second array sum up to T in time (/). To do that, the algorithm passes through the first array in decreasing order (starting at the largest element) and the second array in increasing order (starting at the smallest element).

  8. Dining philosophers problem - Wikipedia

    en.wikipedia.org/wiki/Dining_philosophers_problem

    Illustration of the dining philosophers problem. Each philosopher has a bowl of spaghetti and can reach two of the forks. In computer science, the dining philosophers problem is an example problem often used in concurrent algorithm design to illustrate synchronization issues and techniques for resolving them.

  9. Nearest neighbour algorithm - Wikipedia

    en.wikipedia.org/wiki/Nearest_neighbour_algorithm

    Moreover, for each number of cities there is an assignment of distances between the cities for which the nearest neighbour heuristic produces the unique worst possible tour. (If the algorithm is applied on every vertex as the starting vertex, the best path found will be better than at least N/2-1 other tours, where N is the number of vertices.) [1]