Search results
Results From The WOW.Com Content Network
3.1 Formulas for binary set operations ⋂, ... 3.5.1.1 Empty set. 3.5.2 Meets, Joins, ... Sets that do not intersect are said to be disjoint.
As an example, "is less than" is a relation on the set of natural numbers; it holds, for instance, between the values 1 and 3 (denoted as 1 < 3), and likewise between 3 and 4 (denoted as 3 < 4), but not between the values 3 and 1 nor between 4 and 4, that is, 3 < 1 and 4 < 4 both evaluate to false.
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
If M is a set or class whose elements are sets, then x is an element of the union of M if and only if there is at least one element A of M such that x is an element of A. [11] In symbols: x ∈ ⋃ M ∃ A ∈ M , x ∈ A . {\displaystyle x\in \bigcup \mathbf {M} \iff \exists A\in \mathbf {M} ,\ x\in A.}
In mathematics, the limit of a sequence of sets,, … (subsets of a common set ) is a set whose elements are determined by the sequence in either of two equivalent ways: (1) by upper and lower bounds on the sequence that converge monotonically to the same set (analogous to convergence of real-valued sequences) and (2) by convergence of a sequence of indicator functions which are themselves ...
Elements covered by (3, 3) and covering (3, 3) are highlighted in green and red, respectively. In order of increasing strength, i.e., decreasing sets of pairs, three of the possible partial orders on the Cartesian product of two partially ordered sets are (see Fig. 4):
Set-builder notation can be used to describe a set that is defined by a predicate, that is, a logical formula that evaluates to true for an element of the set, and false otherwise. [2]
The collection of convex subsets of a vector space, an affine space, or a Euclidean space has the following properties: [9] [10] The empty set and the whole space are convex. The intersection of any collection of convex sets is convex. The union of a sequence of convex sets is convex, if they form a non-decreasing chain for inclusion.