When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Successor function - Wikipedia

    en.wikipedia.org/wiki/Successor_function

    The successor function is part of the formal language used to state the Peano axioms, which formalise the structure of the natural numbers.In this formalisation, the successor function is a primitive operation on the natural numbers, in terms of which the standard natural numbers and addition are defined. [1]

  3. Primitive recursive function - Wikipedia

    en.wikipedia.org/wiki/Primitive_recursive_function

    The primitive recursive functions are closely related to mathematical finitism, and are used in several contexts in mathematical logic where a particularly constructive system is desired. Primitive recursive arithmetic (PRA), a formal axiom system for the natural numbers and the primitive recursive functions on them, is often used for this purpose.

  4. Recursion (computer science) - Wikipedia

    en.wikipedia.org/wiki/Recursion_(computer_science)

    A natural number is either 1 or n+1, where n is a natural number. Similarly recursive definitions are often used to model the structure of expressions and statements in programming languages. Language designers often express grammars in a syntax such as Backus–Naur form ; here is such a grammar, for a simple language of arithmetic expressions ...

  5. Recamán's sequence - Wikipedia

    en.wikipedia.org/wiki/Recamán's_sequence

    In mathematics and computer science, Recamán's sequence [1] [2] is a well known sequence defined by a recurrence relation.Because its elements are related to the previous elements in a straightforward way, they are often defined using recursion.

  6. Recursion - Wikipedia

    en.wikipedia.org/wiki/Recursion

    Many mathematical axioms are based upon recursive rules. For example, the formal definition of the natural numbers by the Peano axioms can be described as: "Zero is a natural number, and each natural number has a successor, which is also a natural number." [2] By this base case and recursive rule, one can generate the set of all natural numbers.

  7. Recursive function - Wikipedia

    en.wikipedia.org/wiki/Recursive_function

    Recursive function may refer to: Recursive function (programming), a function which references itself; General recursive function, a computable partial function from natural numbers to natural numbers Primitive recursive function, a function which can be computed with loops of bounded length; Another name for computable function

  8. General recursive function - Wikipedia

    en.wikipedia.org/wiki/General_recursive_function

    The μ-recursive functions (or general recursive functions) are partial functions that take finite tuples of natural numbers and return a single natural number. They are the smallest class of partial functions that includes the initial functions and is closed under composition, primitive recursion, and the minimization operator μ .

  9. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    The first ordinal number that is not a natural number is expressed as ω; this is also the ordinal number of the set of natural numbers itself. The least ordinal of cardinality ℵ 0 (that is, the initial ordinal of ℵ 0 ) is ω but many well-ordered sets with cardinal number ℵ 0 have an ordinal number greater than ω .