Search results
Results From The WOW.Com Content Network
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
The dilute gas viscosity contribution to the total viscosity of a fluid will only be important when predicting the viscosity of vapors at low pressures or the viscosity of dense fluids at high temperatures. The viscosity model for dilute gas, that is shown above, is widely used throughout the industry and applied science communities.
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. [1] For liquids, it corresponds to the informal concept of thickness; for example, syrup has a higher viscosity than water. [2]
The viscosity of a shear thickening – i.e. dilatant – fluid appears to increase when the shear rate increases. Corn starch suspended in water ("oobleck", see below) is a common example: when stirred slowly it looks milky, when stirred vigorously it feels like a very viscous liquid.
In the latter study, a number of common fluids were found to have bulk viscosities which were hundreds to thousands of times larger than their shear viscosities. For relativistic liquids and gases, bulk viscosity is conveniently modeled in terms of a mathematical duality with chemically reacting relativistic fluids. [3]
Relative viscosity (a synonym of "viscosity ratio") is the ratio of the viscosity of a solution to the viscosity of the solvent used (), =. The significance in Relative viscosity is that it can be analyzed the effect a polymer can have on a solution's viscosity such as increasing the solutions viscosity.
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.