Search results
Results From The WOW.Com Content Network
The intercept theorem, also known as Thales's theorem, basic proportionality theorem or side splitter theorem, is an important theorem in elementary geometry about the ratios of various line segments that are created if two rays with a common starting point are intercepted by a pair of parallels.
The midpoint theorem generalizes to the intercept theorem, where rather than using midpoints, both sides are partitioned in the same ratio. [1] [2] The converse of the theorem is true as well. That is if a line is drawn through the midpoint of triangle side parallel to another triangle side then the line will bisect the third side of the triangle.
Desargues' theorem states that a central couple of triangles is axial. The converse statement, that an axial couple of triangles is central, is equivalent (either can be used to prove the other). Desargues' theorem can be proved in the real projective plane, and with suitable modifications for special cases, in the Euclidean plane.
In geometry, Thales's theorem states that if A, B, and C are distinct points on a circle where the line AC is a diameter, the angle ∠ ABC is a right angle. Thales's theorem is a special case of the inscribed angle theorem and is mentioned and proved as part of the 31st proposition in the third book of Euclid 's Elements . [ 1 ]
In the monoid of binary endorelations on a set (with the binary operation on relations being the composition of relations), the converse relation does not satisfy the definition of an inverse from group theory, that is, if is an arbitrary relation on , then does not equal the identity relation on in general.
The theorem is a starting point for noncommutative algebraic geometry since, taking the theorem as an axiom, defining a noncommutative scheme amounts to defining the category of quasi-coherent sheaves on it.
For example, the four-vertex theorem was proved in 1912, but its converse was proved only in 1997. [3] In practice, when determining the converse of a mathematical theorem, aspects of the antecedent may be taken as establishing context. That is, the converse of "Given P, if Q then R" will be "Given P, if R then Q".
Under the standard duality of plane projective geometry (where points correspond to lines and collinearity of points corresponds to concurrency of lines), the statement of Desargues's theorem is self-dual: axial perspectivity is translated into central perspectivity and vice versa. The Desargues configuration (below) is a self-dual configuration.