Search results
Results From The WOW.Com Content Network
In organic chemistry, a ketone / ˈ k iː t oʊ n / is an organic compound with the structure R−C(=O)−R', where R and R' can be a variety of carbon-containing substituents. Ketones contain a carbonyl group −C(=O)− (a carbon-oxygen double bond C=O). The simplest ketone is acetone (where R and R' is methyl), with the formula (CH 3) 2 CO ...
For example, NaC 6 H 5 CO 2, the sodium salt of benzoic acid (C 6 H 5 COOH), is called sodium benzoate. Where an acid has both a systematic and a common name (like CH 3 COOH, for example, which is known as both acetic acid and as ethanoic acid), its salts can be named from either parent name.
The systematic IUPAC name is not always the preferred IUPAC name, for example, lactic acid is a common, and also the preferred, name for what systematic rules call 2-hydroxypropanoic acid. This list is ordered by the number of carbon atoms in a carboxylic acid.
For example, there are at least two isomers of the linear form of pentanone, a ketone that contains a chain of exactly five carbon atoms. There is an oxygen atom bonded to one of the middle three carbons (if it were bonded to an end carbon, the molecule would be an aldehyde , not a ketone), but it is not clear where it is located.
Pages in category "Ketones" The following 200 pages are in this category, out of approximately 482 total. This list may not reflect recent changes.
Fructose, an example of a ketose. The ketone group is the double-bonded oxygen. In organic chemistry, a ketose is a monosaccharide containing one ketone (>C=O) group per molecule. [1] [2] The simplest ketose is dihydroxyacetone ((CH 2 OH) 2 C=O), which has only three carbon atoms. It is the only ketose with no optical activity.
Because primary and secondary amines react with aldehydes and ketones, the most common variety of these aminocarbonyl compounds feature tertiary amines. Such compounds are produced by amination of α-haloketones and α-haloaldehydes. [1] Examples include cathinones, methadone, molindone, pimeclone, ferruginine, and tropinone.
A classic example for favoring the keto form can be seen in the equilibrium between vinyl alcohol and acetaldehyde (K = [enol]/[keto] ≈ 3 × 10 −7). In 1,3-diketones, such as acetylacetone (2,4-pentanedione), the enol form is more favored. The acid-catalyzed conversion of an enol to the keto form proceeds by proton transfer from O to carbon.