Search results
Results From The WOW.Com Content Network
At 20 °C and 101.325 kPa, dry air has a density of 1.2041 kg/m 3. At 70 °F and 14.696 psi, dry air has a density of 0.074887 lb/ft 3. The following table illustrates the air density–temperature relationship at 1 atm or 101.325 kPa: [citation needed]
On the other hand, some constants, such as K f (the freezing point depression constant, or cryoscopic constant), depend on the identity of a substance, and so may be considered to describe the state of a system, and therefore may be considered physical properties. "Specific" properties are expressed on a per mass basis.
Composition of dry atmosphere, by volume [ note 1] [ note 2]; Gas (and others): Various [1]: CIPM-2007 [2]: ASHRAE [3]: Schlatter [4]: ICAO [5]: US StdAtm76 [6]: Tap ...
The way that the dry soils get a lot lighter between Table I on page 99 and table IV on pages 102-3 is eventually explained by the fact that Table I has pycnometer densities. For those who may already see reasons to learn more about the thermal conductivities of the soils it is free from the Army Cold Regions Research and Engineering Laboratory.
Errors up to 15% can occur if the air movement is too slow or if there is too much radiant heat present (from sunlight, for example). A wet bulb temperature taken with air moving at about 1–2 m/s is referred to as a screen temperature, whereas a temperature taken with air moving about 3.5 m/s or more is referred to as sling temperature.
Dynamic viscosity is a material property which describes the resistance of a fluid to shearing flows. It corresponds roughly to the intuitive notion of a fluid's 'thickness'. For instance, honey has a much higher viscosity than water.
A material property is an intensive property of a material, i.e., a physical property or chemical property that does not depend on the amount of the material. These quantitative properties may be used as a metric by which the benefits of one material versus another can be compared, thereby aiding in materials selection.
In thermodynamics, the reduced properties of a fluid are a set of state variables scaled by the fluid's state properties at its critical point. These dimensionless thermodynamic coordinates, taken together with a substance's compressibility factor , provide the basis for the simplest form of the theorem of corresponding states .