Search results
Results From The WOW.Com Content Network
The transfer-matrix method is a method used in optics and acoustics to analyze the propagation of electromagnetic or acoustic waves through a stratified medium; a stack of thin films. [ 1 ] [ 2 ] This is, for example, relevant for the design of anti-reflective coatings and dielectric mirrors .
Since a decent imaging system where this is not the case for all rays must still focus the paraxial rays correctly, this matrix method will properly describe the positions of focal planes and magnifications, however aberrations still need to be evaluated using full ray-tracing techniques. [1]
Download as PDF; Printable version; ... The full combination of the 3-dimensional rotation matrices is the following: ... Introduction to Matrix Methods in Optics ...
Mueller calculus is a matrix method for manipulating Stokes vectors, which represent the polarization of light. It was developed in 1943 by Hans Mueller . In this technique, the effect of a particular optical element is represented by a Mueller matrix—a 4×4 matrix that is an overlapping generalization of the Jones matrix .
Transfer-matrix method (statistical mechanics), a mathematical technique used to write the partition function into a simpler form. Transfer-matrix method (optics), a method to analyze the propagation of electromagnetic or acoustic waves through a stratified medium. Ray transfer matrix analysis in geometric optics, a mathematical method for ...
Download as PDF; Printable version; ... Physical optics deal with aspects of optics which have to be described by wave phenomena. ... Transfer-matrix method (optics)
It follows rather readily (see orthogonal matrix) that any orthogonal matrix can be decomposed into a product of 2 by 2 rotations, called Givens Rotations, and Householder reflections. This is appealing intuitively since multiplication of a vector by an orthogonal matrix preserves the length of that vector, and rotations and reflections exhaust ...
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...