Search results
Results From The WOW.Com Content Network
Fritz Haber, 1918. The Haber process, [1] also called the Haber–Bosch process, is the main industrial procedure for the production of ammonia. [2] [3] It converts atmospheric nitrogen (N 2) to ammonia (NH 3) by a reaction with hydrogen (H 2) using finely divided iron metal as a catalyst:
Forming gas is a mixture of hydrogen (mole fraction varies) [1] and nitrogen. It is sometimes called a "dissociated ammonia atmosphere" due to the reaction which generates it: 2 NH 3 → 3 H 2 + N 2. It can also be manufactured by thermal cracking of ammonia, in an ammonia cracker or forming gas generator. [2]
In chemistry, ammonolysis (/am·mo·nol·y·sis/) is the process of splitting ammonia into + +. [1] Ammonolysis reactions can be conducted with organic compounds to produce amines (molecules containing a nitrogen atom with a lone pair, :N), [2] or with inorganic compounds to produce nitrides.
The Ostwald process begins with burning ammonia.Ammonia burns in oxygen at temperature about 900 °C (1,650 °F) and pressure up to 8 standard atmospheres (810 kPa) [4] in the presence of a catalyst such as platinum gauze, alloyed with 10% rhodium to increase its strength and nitric oxide yield, platinum metal on fused silica wool, copper or nickel to form nitric oxide (nitrogen(II) oxide) and ...
The liquid nitrogen wash has two principle functions: [1] Removal of impurities such as carbon monoxide, argon and methane from the crude hydrogen gas; Addition of the required stoichiometric amount of nitrogen to the hydrogen stream to achieve the correct ammonia synthesis gas ratio of hydrogen to nitrogen of 3 : 1
The hydrogen in ammonia is susceptible to replacement by a myriad substituents. Ammonia gas reacts with metallic sodium to give sodamide, NaNH 2. [38] With chlorine, monochloramine is formed. Pentavalent ammonia is known as λ 5-amine, nitrogen pentahydride decomposes spontaneously into trivalent ammonia (λ 3-amine) and hydrogen gas at normal ...
The industrial production of ammonium nitrate entails the acid-base reaction of ammonia with nitric acid: [12] HNO 3 + NH 3 → NH 4 NO 3. The ammonia required for this process is obtained by the Haber process from nitrogen and hydrogen. Ammonia produced by the Haber process can be oxidized to nitric acid by the Ostwald process.
Ammonium sulfate is made by treating ammonia with sulfuric acid: 2 NH 3 + H 2 SO 4 → (NH 4) 2 SO 4. A mixture of ammonia gas and water vapor is introduced into a reactor that contains a saturated solution of ammonium sulfate and about 2% to 4% of free sulfuric acid at 60 °C.