Search results
Results From The WOW.Com Content Network
A solenoid is a one-dimensional homogeneous indecomposable continuum that has the structure of an abelian compact topological group. Solenoids were first introduced by Vietoris for the n i = 2 {\displaystyle n_{i}=2} case, [ 2 ] and by van Dantzig the n i = n {\displaystyle n_{i}=n} case, where n ≥ 2 {\displaystyle n\geq 2} is fixed. [ 3 ]
An example of a solenoidal vector field, (,) = (,) In vector calculus a solenoidal vector field (also known as an incompressible vector field, a divergence-free vector field, or a transverse vector field) is a vector field v with divergence zero at all points in the field: =
A finite solenoid is a solenoid with finite length. Continuous means that the solenoid is not formed by discrete coils but by a sheet of conductive material. We assume the current is uniformly distributed on the surface of the solenoid, with a surface current density K ; in cylindrical coordinates : K → = I l ϕ ^ . {\displaystyle {\vec {K ...
In algebra, the length of a module over a ring is a generalization of the dimension of a vector space which measures its size. [1] page 153 It is defined to be the length of the longest chain of submodules.
The number of functions and points of interpolations define the accuracy of the element in the infinite direction. [1] The method is commonly used to solve acoustic problems and allows to respect the Sommerfeld condition of non-return of the acoustic waves and the diffusion of the pressure waves in the far field.
The solenoid can be useful for positioning, stopping mid-stroke, or for low velocity actuation; especially in a closed loop control system. A uni-directional solenoid would actuate against an opposing force or a dual solenoid system would be self cycling. The proportional concept is more fully described in SAE publication 860759 (1986).
This relationship is used in the Laplace transfer function of any analog filter or the digital infinite impulse response (IIR) filter T(z) of the analog filter. The bilinear transform essentially uses this first order approximation and substitutes into the continuous-time transfer function, H a ( s ) {\displaystyle H_{a}(s)}
In two dimensions, for a vortex line of infinite length, the induced velocity at a point is given by = where Γ is the strength of the vortex and r is the perpendicular distance between the point and the vortex line. This is similar to the magnetic field produced on a plane by an infinitely long straight thin wire normal to the plane.