Search results
Results From The WOW.Com Content Network
A body's motion preserves the status quo, but external forces can perturb this. The modern understanding of Newton's first law is that no inertial observer is privileged over any other. The concept of an inertial observer makes quantitative the everyday idea of feeling no effects of motion.
Noether's theorem states that a continuous symmetry transformation of the action corresponds to a conservation law, i.e. the action (and hence the Lagrangian) does not change under a transformation parameterized by a parameter s: [(,), ˙ (,)] = [(), ˙ ()] the Lagrangian describes the same motion independent of s, which can be length, angle of ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
Classical mechanics is the branch of physics used to describe the motion of macroscopic objects. [1] It is the most familiar of the theories of physics. The concepts it covers, such as mass, acceleration, and force, are commonly used and known. [2]
Classical mechanics was traditionally divided into three main branches. Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather is in equilibrium with its environment. [3]
Force is the action of one body on another. A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application (or point of contact). Thus, force is a vector quantity, because its effect depends ...
Euler's second law states that the rate of change of angular momentum L about a point that is fixed in an inertial reference frame (often the center of mass of the body), is equal to the sum of the external moments of force acting on that body M about that point: [1] [4] [5]
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...