Ads
related to: camber alignment angle guide tooltirerack.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Camber is the angle which the vertical axis of the wheel makes with the vertical axis of the vehicle. This angle is very important for the cornering performance of the vehicles. Generally, a Camber around 0.5-2 degrees is given on the vehicles. Depending upon wheel orientation, Camber can be of three types. 1. Positive Camber
Toe is usually adjustable in production automobiles, even though caster angle and camber angle are often not adjustable. Maintenance of front-end alignment, which used to involve all three adjustments, currently involves only setting the toe; in most cases, even for a car in which caster or camber are adjustable, only the toe will need ...
The 1960 Milliken MX1 Camber Car has a large negative camber. Camber angle is one of the angles made by the wheels of a vehicle; specifically, it is the angle between the vertical axis of a wheel and the vertical axis of the vehicle when viewed from the front or rear.
Simple approximation for designing Ackermann geometry. A simple approximation to perfect Ackermann steering geometry may be generated by moving the steering pivot points [clarification needed] inward so as to lie on a line drawn between the steering kingpins, which is the pivot point, and the centre of the rear axle. [3]
Excessive caster angle will make the steering heavier and less responsive, although in racing large caster angles are used for improving camber gain in cornering. Caster angles over 7 degrees with radial tires are common. Power steering is usually necessary to overcome the jacking effect from the high caster angle. Some front-end alignment ...
Change in camber due to cornering forces can cause loss of rear-wheel adhesion leading to oversteer—a dynamically unstable condition that can cause a vehicle to spin. This is an especially severe problem when a swing axle is used in a rear-engine design, because of the greater side-g forces on the rear wheels from the mass of the engine.