When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  3. List of numerical analysis topics - Wikipedia

    en.wikipedia.org/wiki/List_of_numerical_analysis...

    Ross' π lemma — there is fundamental time constant within which a control solution must be computed for controllability and stability; Sethi model — optimal control problem modelling advertising; Infinite-dimensional optimization. Semi-infinite programming — infinite number of variables and finite number of constraints, or other way around

  4. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.

  5. Simpson's rule - Wikipedia

    en.wikipedia.org/wiki/Simpson's_rule

    from collections.abc import Sequence def simpson_nonuniform (x: Sequence [float], f: Sequence [float])-> float: """ Simpson rule for irregularly spaced data.:param x: Sampling points for the function values:param f: Function values at the sampling points:return: approximation for the integral See ``scipy.integrate.simpson`` and the underlying ...

  6. Brent's method - Wikipedia

    en.wikipedia.org/wiki/Brent's_method

    a k is the "contrapoint," i.e., a point such that f(a k) and f(b k) have opposite signs, so the interval [a k, b k] contains the solution. Furthermore, |f(b k)| should be less than or equal to |f(a k)|, so that b k is a better guess for the unknown solution than a k. b k−1 is the previous iterate (for the first iteration, we set b k−1 = a 0).

  7. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    Because of the more stable behavior of addition and multiplication in the p-adic numbers compared to the real numbers (specifically, the unit ball in the p-adics is a ring), convergence in Hensel's lemma can be guaranteed under much simpler hypotheses than in the classical Newton's method on the real line.

  8. Power iteration - Wikipedia

    en.wikipedia.org/wiki/Power_iteration

    #!/usr/bin/env python3 import numpy as np def power_iteration (A, num_iterations: int): # Ideally choose a random vector # To decrease the chance that our vector # Is orthogonal to the eigenvector b_k = np. random. rand (A. shape [1]) for _ in range (num_iterations): # calculate the matrix-by-vector product Ab b_k1 = np. dot (A, b_k) # calculate the norm b_k1_norm = np. linalg. norm (b_k1 ...

  9. Moore–Penrose inverse - Wikipedia

    en.wikipedia.org/wiki/Moore–Penrose_inverse

    For example, in the MATLAB or GNU Octave function pinv, the tolerance is taken to be t = ε⋅max(m, n)⋅max(Σ), where ε is the machine epsilon. The computational cost of this method is dominated by the cost of computing the SVD, which is several times higher than matrix–matrix multiplication, even if a state-of-the art implementation ...