Ads
related to: heat partial differential equation in applied mathematics
Search results
Results From The WOW.Com Content Network
In mathematics and physics, the heat equation is a parabolic partial differential equation. The theory of the heat equation was first developed by Joseph Fourier in 1822 for the purpose of modeling how a quantity such as heat diffuses through a given region. Since then, the heat equation and its variants have been found to be fundamental in ...
In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.
In mathematics, and more specifically in partial differential equations, Duhamel's principle is a general method for obtaining solutions to inhomogeneous linear evolution equations like the heat equation, wave equation, and vibrating plate equation.
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.
The porous medium equation name originates from its use in describing the flow of an ideal gas in a homogeneous porous medium. [6] We require three equations to completely specify the medium's density , flow velocity field , and pressure : the continuity equation for conservation of mass; Darcy's law for flow in a porous medium; and the ideal gas equation of state.
This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...
The Cole–Hopf transformation is a change of variables that allows to transform a special kind of parabolic partial differential equations (PDEs) with a quadratic nonlinearity into a linear heat equation. In particular, it provides an explicit formula for fairly general solutions of the PDE in terms of the initial datum and the heat kernel.
In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...