When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    These include the Calabi triangle (a triangle with three congruent inscribed squares), [10] the golden triangle and golden gnomon (two isosceles triangles whose sides and base are in the golden ratio), [11] the 80-80-20 triangle appearing in the Langley's Adventitious Angles puzzle, [12] and the 30-30-120 triangle of the triakis triangular tiling.

  3. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    Regular polygons; Description Figure Second moment of area Comment A filled regular (equiliteral) triangle with a side length of a = = [6] The result is valid for both a horizontal and a vertical axis through the centroid, and therefore is also valid for an axis with arbitrary direction that passes through the origin.

  4. Simplex - Wikipedia

    en.wikipedia.org/wiki/Simplex

    as can be seen by multiplying the previous formula by x n+1, to get the volume under the n-simplex as a function of its vertex distance x from the origin, differentiating with respect to x, at = / (where the n-simplex side length is 1), and normalizing by the length / + of the increment, (/ (+), …, / (+)), along the normal vector.

  5. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  6. Hypercone - Wikipedia

    en.wikipedia.org/wiki/Hypercone

    In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.

  7. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    Joseph Boussinesq derived the velocity profile and volume flow rate in 1868 for rectangular channel and tubes of equilateral triangular cross-section and for elliptical cross-section. [17] Joseph Proudman derived the same for isosceles triangles in 1914. [ 18 ]

  8. Outline of geometry - Wikipedia

    en.wikipedia.org/wiki/Outline_of_geometry

    Brahmagupta's formula; Bretschneider's formula; Compass and straightedge constructions. Squaring the circle; Complex geometry; Conic section. Focus; Circle. List of circle topics; Thales' theorem; Circumcircle; Concyclic; Incircle and excircles of a triangle; Orthocentric system; Monge's theorem; Power center; Nine-point circle; Circle points ...

  9. Shell integration - Wikipedia

    en.wikipedia.org/wiki/Shell_integration

    The shell method goes as follows: Consider a volume in three dimensions obtained by rotating a cross-section in the xy-plane around the y-axis. Suppose the cross-section is defined by the graph of the positive function f(x) on the interval [a, b]. Then the formula for the volume will be: ()