Search results
Results From The WOW.Com Content Network
Rotation engine of ATP synthase. Located within the thylakoid membrane and the inner mitochondrial membrane, ATP synthase consists of two regions F O and F 1. F O causes rotation of F 1 and is made of c-ring and subunits a, two b, F6. F 1 is made of α, β, γ, and δ subunits. F 1 has a water-soluble part that can hydrolyze ATP.
ATP synthase is composed of two linked multi-subunit complexes: the soluble catalytic core, F 1, and the membrane-spanning component, F o, comprising the proton channel. The catalytic portion of mitochondrial ATP synthase consists of 5 different subunits (alpha, beta, gamma, delta, and epsilon) assembled with a stoichiometry of 3 alpha, 3 beta ...
Mechanism of ATP synthase. ATP is shown in red, ADP and phosphate in pink and the rotating γ subunit in black. This ATP synthesis reaction is called the binding change mechanism and involves the active site of a β subunit cycling between three states. [77] In the "open" state, ADP and phosphate enter the active site (shown in brown in the ...
This gradient is used by the F O F 1 ATP synthase complex to make ATP via oxidative phosphorylation. ATP synthase is sometimes described as Complex V of the electron transport chain. [10] The F O component of ATP synthase acts as an ion channel that provides for a proton flux back into the mitochondrial matrix. It is composed of a, b and c ...
ATP synthase is the enzyme that makes ATP by chemiosmosis. It allows protons to pass through the membrane and uses the free energy difference to convert phosphorylate adenosine diphosphate (ADP) into ATP. The ATP synthase contains two parts: CF0 (present in thylakoid membrane) and CF1 (protrudes on the outer surface of thylakoid membrane).
The protons return to the mitochondrial matrix through the protein ATP synthase. The energy is used in order to rotate ATP synthase which facilitates the passage of a proton, producing ATP. A pH difference between the matrix and intermembrane space creates an electrochemical gradient by which ATP synthase can pass a proton into the matrix ...
The NBD or ATP-binding cassette (ABC) domain, on the other hand, is located in the cytoplasm and has a highly conserved sequence. The NBD is the site for ATP binding. [ 23 ] In most exporters, the N-terminal transmembrane domain and the C-terminal ABC domains are fused as a single polypeptide chain, arranged as TMD-NBD-TMD-NBD.
ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases ...