Ads
related to: fraction into decimal chart
Search results
Results From The WOW.Com Content Network
Decimal fractions are commonly expressed using decimal notation in which the implied denominator is determined by the number of digits to the right of a decimal separator, the appearance of which (e.g., a period, an interpunct (·), a comma) depends on the locale (for examples, see Decimal separator). Thus, for 0.75 the numerator is 75 and the ...
A handy chart of decimal-fraction equivalents, 0 to 1 by 64ths. Prints nicely as 11x17 in landscape orientation. Useful for machinists who work with inch-based measurements. Date: 24 October 2007: Source: Own work: Author: Three-quarter-ten
Drill bit sizes are written as irreducible fractions. So, instead of 78/64 inch, or 1 14/64 inch, the size is noted as 1 7/32 inch. Below is a chart providing the decimal-fraction equivalents that are most relevant to fractional-inch drill bit sizes (that is, 0 to 1 by 64ths).
The major minus pitch technique also works for inch-based threads, but you must first calculate the pitch by converting the fraction of threads-per-inch (TPI) into a decimal. For example, a screw with a pitch of 1/20 in (20 threads per inch) has a pitch of 0.050 in and a 1 ⁄ 13 in pitch (13 threads per inch) has a pitch of 0.077 in.
Any such decimal fraction, i.e.: d n = 0 for n > N, may be converted to its equivalent infinite decimal expansion by replacing d N by d N − 1 and replacing all subsequent 0s by 9s (see 0.999...). In summary, every real number that is not a decimal fraction has a unique infinite decimal expansion.
That is, the value of an octal "10" is the same as a decimal "8", an octal "20" is a decimal "16", and so on. In a hexadecimal system, there are 16 digits, 0 through 9 followed, by convention, with A through F. That is, a hexadecimal "10" is the same as a decimal "16" and a hexadecimal "20" is the same as a decimal "32".
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
The final conversion is from binary to decimal fractions. The only difficulty arises with repeating fractions, but otherwise the method is to shift the fraction to an integer, convert it as above, and then divide by the appropriate power of two in the decimal base. For example: