Search results
Results From The WOW.Com Content Network
A codon table can be used to translate a genetic code into a sequence of amino acids. [1] [2] The standard genetic code is traditionally represented as an RNA codon table, because when proteins are made in a cell by ribosomes, it is messenger RNA (mRNA) that directs protein synthesis. [2] [3] The mRNA sequence is determined by the sequence of ...
DNA uses T instead. This mRNA molecule will instruct a ribosome to synthesize a protein according to this code. The genetic code is the set of rules used by living cells to translate information encoded within genetic material (DNA or RNA sequences of nucleotide triplets or codons) into proteins.
At a wavelength of 260 nm, the average extinction coefficient for double-stranded DNA is 0.020 (μg/mL) −1 cm −1, for single-stranded DNA it is 0.027 (μg/mL) −1 cm −1, for single-stranded RNA it is 0.025 (μg/mL) −1 cm −1 and for short single-stranded oligonucleotides it is dependent on the length and base composition.
Nucleic acids consist of a chain of linked units called nucleotides. Each nucleotide consists of three subunits: a phosphate group and a sugar (ribose in the case of RNA, deoxyribose in DNA) make up the backbone of the nucleic acid strand, and attached to the sugar is one of a set of nucleobases.
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
RNA adopts this double helical form, and RNA-DNA duplexes are mostly A-form, but B-form RNA-DNA duplexes have been observed. [14] In localized single strand dinucleotide contexts, RNA can also adopt the B-form without pairing to DNA. [15] A-DNA has a deep, narrow major groove which does not make it easily accessible to proteins.
RNA is subdivided into many categories, including messenger RNA (), ribosomal RNA (), transfer RNA (), long non-coding RNA (), and several other small functional RNAs.. Whereas many proteins have quaternary structure, the majority of RNA molecules have only primary through tertiary structure and function as individual molecules rather than as multi-subunit structures
The 5′-end (pronounced "five prime end") designates the end of the DNA or RNA strand that has the fifth carbon in the sugar-ring of the deoxyribose or ribose at its terminus. A phosphate group attached to the 5′-end permits ligation of two nucleotides , i.e., the covalent binding of a 5′-phosphate to the 3′-hydroxyl group of another ...