When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Levi-Civita symbol - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_symbol

    In two dimensions, the Levi-Civita symbol is defined by: = {+ (,) = (,) (,) = (,) = The values can be arranged into a 2 × 2 antisymmetric matrix: = (). Use of the two-dimensional symbol is common in condensed matter, and in certain specialized high-energy topics like supersymmetry [1] and twistor theory, [2] where it appears in the context of 2-spinors.

  3. Kronecker delta - Wikipedia

    en.wikipedia.org/wiki/Kronecker_delta

    The generalized Kronecker delta or multi-index Kronecker delta of order is a type (,) tensor that is ... and the relation with the Levi-Civita symbol, ...

  4. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  5. Canonical commutation relation - Wikipedia

    en.wikipedia.org/wiki/Canonical_commutation_relation

    For the angular momentum operators L x = y p z − z p y, etc., one has that [,] =, where is the Levi-Civita symbol and simply reverses the sign of the answer under pairwise interchange of the indices.

  6. Raising and lowering indices - Wikipedia

    en.wikipedia.org/wiki/Raising_and_lowering_indices

    where is the Kronecker delta or identity matrix. Finite-dimensional real vector spaces with (pseudo-)metrics are classified up to signature, a coordinate-free property which is well-defined by Sylvester's law of inertia. Possible metrics on real space are indexed by signature (,).

  7. Ricci calculus - Wikipedia

    en.wikipedia.org/wiki/Ricci_calculus

    Replacing any index symbol throughout by another leaves the tensor equation unchanged (provided there is no conflict with other symbols already used). This can be useful when manipulating indices, such as using index notation to verify vector calculus identities or identities of the Kronecker delta and Levi-Civita symbol (see also below). An ...

  8. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold, one can additionally arrange that the metric tensor is the Kronecker delta at the point p, and that the first partial derivatives of the metric at p vanish.

  9. Triple product - Wikipedia

    en.wikipedia.org/wiki/Triple_product

    This can be simplified by performing a contraction on the Levi-Civita symbols, = =, where is the Kronecker delta function (= when and = when =) and is the generalized Kronecker delta function. We can reason out this identity by recognizing that the index k {\\displaystyle k} will be summed out leaving only i {\\displaystyle i} and j ...