Search results
Results From The WOW.Com Content Network
[8] [9] [verification needed] Cramer's rule can also be numerically unstable even for 2×2 systems. [10] However, Cramer's rule can be implemented with the same complexity as Gaussian elimination, [11] [12] (consistently requires twice as many arithmetic operations and has the same numerical stability when the same permutation matrices are ...
In this case, the solution is given by Cramer's rule: = () =,,, …, where is the matrix formed by replacing the -th column of by the column vector . This follows immediately by column expansion of the determinant, i.e.
Though Cramer's rule is important theoretically, it has little practical value for large matrices, since the computation of large determinants is somewhat cumbersome. (Indeed, large determinants are most easily computed using row reduction.)
Rule of Sarrus: The determinant of the three columns on the left is the sum of the products along the down-right diagonals minus the sum of the products along the up-right diagonals. In matrix theory , the rule of Sarrus is a mnemonic device for computing the determinant of a 3 × 3 {\displaystyle 3\times 3} matrix named after the French ...
In mathematics, a unimodular matrix M is a square integer matrix having determinant +1 or −1. Equivalently, it is an integer matrix that is invertible over the integers : there is an integer matrix N that is its inverse (these are equivalent under Cramer's rule ).
Matrix theory is the branch of mathematics that focuses on the study of matrices. ... Determinants can be used to solve linear systems using Cramer's rule, ...
Let A be an m × n matrix and k an integer with 0 < k ≤ m, and k ≤ n.A k × k minor of A, also called minor determinant of order k of A or, if m = n, the (n − k) th minor determinant of A (the word "determinant" is often omitted, and the word "degree" is sometimes used instead of "order") is the determinant of a k × k matrix obtained from A by deleting m − k rows and n − k columns.
In linear algebra, an invertible matrix is a square matrix which has an inverse. In other words, if some other matrix is multiplied by the invertible matrix, the result can be multiplied by an inverse to undo the operation. An invertible matrix multiplied by its inverse yields the identity matrix. Invertible matrices are the same size as their ...