Search results
Results From The WOW.Com Content Network
During 1928, Hartley formulated a way to quantify information and its line rate (also known as data signalling rate R bits per second). [2] This method, later known as Hartley's law, became an important precursor for Shannon's more sophisticated notion of channel capacity.
Channel capacity, in electrical engineering, computer science, and information theory, is the theoretical maximum rate at which information can be reliably transmitted over a communication channel.
The maximum user signaling rate, synonymous to gross bit rate or data signaling rate, is the maximum rate, in bits per second, at which binary information can be transferred in a given direction between users over the communications system facilities dedicated to a particular information transfer transaction, under conditions of continuous transmission and no overhead information.
the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; as well as; the bit—a new way of seeing the most fundamental unit of information.
The figures below are simplex data rates, which may conflict with the duplex rates vendors sometimes use in promotional materials. Where two values are listed, the first value is the downstream rate and the second value is the upstream rate. The use of decimal prefixes is standard in data communications.
In information theory, the noisy-channel coding theorem (sometimes Shannon's theorem or Shannon's limit), establishes that for any given degree of noise contamination of a communication channel, it is possible (in theory) to communicate discrete data (digital information) nearly error-free up to a computable maximum rate through the channel.
Bandwidth sometimes defines the net bit rate (aka. peak bit rate, information rate, or physical layer useful bit rate), channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth tests measure the maximum throughput of a computer network.
The first sub-block is the m-bit block of payload data. The second sub-block is n/2 parity bits for the payload data, computed using a recursive systematic convolutional code (RSC code). The third sub-block is n/2 parity bits for a known permutation of the payload data, again computed using an RSC code. Thus, two redundant but different sub ...