When.com Web Search

  1. Ads

    related to: best data cleaning techniques excel

Search results

  1. Results From The WOW.Com Content Network
  2. Data cleansing - Wikipedia

    en.wikipedia.org/wiki/Data_cleansing

    Data cleansing or data cleaning is the process of identifying and correcting (or removing) corrupt, inaccurate, or irrelevant records from a dataset, table, or database. It involves detecting incomplete, incorrect, or inaccurate parts of the data and then replacing, modifying, or deleting the affected data. [ 1 ]

  3. Data analysis - Wikipedia

    en.wikipedia.org/wiki/Data_analysis

    [21] [22] The need for data cleaning will arise from problems in the way that the datum are entered and stored. [21] Data cleaning is the process of preventing and correcting these errors. Common tasks include record matching, identifying inaccuracy of data, overall quality of existing data, deduplication, and column segmentation. [23]

  4. Data preparation - Wikipedia

    en.wikipedia.org/wiki/Data_preparation

    Given the variety of data sources (e.g. databases, business applications) that provide data and formats that data can arrive in, data preparation can be quite involved and complex. There are many tools and technologies [5] that are used for data preparation. The cost of cleaning the data should always be balanced against the value of the ...

  5. Extract, transform, load - Wikipedia

    en.wikipedia.org/wiki/Extract,_transform,_load

    Extract, transform, load (ETL) is a three-phase computing process where data is extracted from an input source, transformed (including cleaning), and loaded into an output data container. The data can be collected from one or more sources and it can also be output to one or more destinations.

  6. Data preprocessing - Wikipedia

    en.wikipedia.org/wiki/Data_Preprocessing

    Semantic data mining is a subset of data mining that specifically seeks to incorporate domain knowledge, such as formal semantics, into the data mining process.Domain knowledge is the knowledge of the environment the data was processed in. Domain knowledge can have a positive influence on many aspects of data mining, such as filtering out redundant or inconsistent data during the preprocessing ...

  7. Data sanitization - Wikipedia

    en.wikipedia.org/wiki/Data_sanitization

    Data sanitization methods are also applied for the cleaning of sensitive data, such as through heuristic-based methods, machine-learning based methods, and k-source anonymity. [ 2 ] This erasure is necessary as an increasing amount of data is moving to online storage, which poses a privacy risk in the situation that the device is resold to ...