Search results
Results From The WOW.Com Content Network
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.
Enhancers control cell-type-specific gene transcription programs, most often by looping through long distances to come in physical proximity with the promoters of their target genes. [11] While there are hundreds of thousands of enhancer DNA regions, [ 12 ] for a particular type of tissue only specific enhancers are brought into proximity with ...
Inducible systems - An inducible system is off unless there is the presence of some molecule (called an inducer) that allows for gene expression. The molecule is said to "induce expression". The manner by which this happens is dependent on the control mechanisms as well as differences between prokaryotic and eukaryotic cells.
All cells in a eukaryotic organism have the same DNA but are specified through differential gene expression, a phenomenon known as genetic totipotency. [7] However, in order for a cell to express the genes for proper functioning, the genes must be closely regulated to express the correct properties.
Genetic regulatory circuits (also referred to as transcriptional regulatory circuits) is a concept that evolved from the Operon Model discovered by François Jacob and Jacques Monod. [ 1 ] [ 2 ] [ 3 ] They are functional clusters of genes that impact each other's expression through inducible transcription factors and cis-regulatory elements .
The downstream "control region" then modulates the elongation rate of either the ribosome or RNA polymerase. The factor determining this depends on the function of the downstream genes (e.g. the operon encoding enzymes involved in the synthesis of histidine contains a series of histidine codons is the control region).
The G1/S cell cycle checkpoint controls the passage of eukaryotic cells from the first gap phase, G1, into the DNA synthesis phase, S. In this switch in mammalian cells, there are two cell cycle kinases that help to control the checkpoint: cell cycle kinases CDK4/6-cyclin D and CDK2-cyclin E. [ 1 ] The transcription complex that includes Rb and ...