Search results
Results From The WOW.Com Content Network
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
Eukaryotic Transcription. Eukaryotic transcription is the elaborate process that eukaryotic cells use to copy genetic information stored in DNA into units of transportable complementary RNA replica. [1] Gene transcription occurs in both eukaryotic and prokaryotic cells. Unlike prokaryotic RNA polymerase that initiates the transcription of all ...
Some eukaryotic cells contain an enzyme with reverse transcription activity called telomerase. Telomerase carries an RNA template from which it synthesizes a telomere, a repeating sequence of DNA, to the end of linear chromosomes. It is important because every time a linear chromosome is duplicated, it is shortened.
Mediator is a multiprotein complex that functions as a transcriptional coactivator in all eukaryotes. It was discovered in 1990 in the lab of Roger D. Kornberg, recipient of the 2006 Nobel Prize in Chemistry. [1] [2] Mediator [a] complexes interact with transcription factors and RNA polymerase II. The main function of mediator complexes is to ...
All cells in a eukaryotic organism have the same DNA but are specified through differential gene expression, a phenomenon known as genetic totipotency. [7] However, in order for a cell to express the genes for proper functioning, the genes must be closely regulated to express the correct properties.
This is an outline of an example mechanism of yeast cells by which chromatin structure and histone post-translational modification help regulate and record the transcription of genes by RNA polymerase II. This pathway gives examples of regulation at these points of transcription: Pre-initiation (promotion by Bre1, histone modification)
Illustration of an activator. In molecular biology, a transcription factor (TF) (or sequence-specific DNA-binding factor) is a protein that controls the rate of transcription of genetic information from DNA to messenger RNA, by binding to a specific DNA sequence.
Transcription preinitiation complex, represented by the central cluster of proteins, causes RNA polymerase to bind to target DNA site. The PIC is able to bind both the promoter sequence near the gene to be transcribed and an enhancer sequence in a different part of the genome, allowing enhancer sequences to regulate a gene distant from it.