Search results
Results From The WOW.Com Content Network
Out of the 256 ternary Boolean operators cited above, () + of them are such degenerate forms of binary or lower-arity operators, using the inclusion–exclusion principle. The ternary operator f ( x , y , z ) = ¬ x {\displaystyle f(x,y,z)=\lnot x} is one such operator which is actually a unary operator applied to one input, and ignoring the ...
The detailed semantics of "the" ternary operator as well as its syntax differs significantly from language to language. A top level distinction from one language to another is whether the expressions permit side effects (as in most procedural languages) and whether the language provides short-circuit evaluation semantics, whereby only the selected expression is evaluated (most standard ...
The Cantor set consists of the points from 0 to 1 that have a ternary expression that does not contain any instance of the digit 1. [4] [5] Any terminating expansion in the ternary system is equivalent to the expression that is identical up to the term preceding the last non-zero term followed by the term one less than the last non-zero term of ...
In mathematics, a ternary operation is an n-ary operation with n = 3. A ternary operation on a set A takes any given three elements of A and combines them to form a single element of A. In computer science, a ternary operator is an operator that takes three arguments as input and returns one output. [1]
As with bivalent logic, truth values in ternary logic may be represented numerically using various representations of the ternary numeral system. A few of the more common examples are: in balanced ternary, each digit has one of 3 values: −1, 0, or +1; these values may also be simplified to −, 0, +, respectively; [15]
expression 1, expression 2: Expressions with values of any type. If the condition is evaluated to true, the expression 1 will be evaluated. If the condition is evaluated to false, the expression 2 will be evaluated. It should be read as: "If condition is true, assign the value of expression 1 to result.
After the operations have been specified, the nature of the algebra is further defined by axioms, which in universal algebra often take the form of identities, or equational laws. An example is the associative axiom for a binary operation, which is given by the equation x ∗ (y ∗ z) = (x ∗ y) ∗ z.
If the three values of ternary logic are false, unknown and true, and these are mapped to balanced ternary as T, 0 and 1 and to conventional unsigned ternary values as 0, 1 and 2, then balanced ternary can be viewed as a biased number system analogous to the offset binary system. If the ternary number has n trits, then the bias b is