Search results
Results From The WOW.Com Content Network
A set such as {{,,}} is a singleton as it contains a single element (which itself is a set, but not a singleton). A set is a singleton if and only if its cardinality is 1. In von Neumann's set-theoretic construction of the natural numbers, the number 1 is defined as the singleton {}.
The carrier (underlying set) associated with a unit type can be any singleton set. There is an isomorphism between any two such sets, so it is customary to talk about the unit type and ignore the details of its value. One may also regard the unit type as the type of 0-tuples, i.e. the product of no types.
There are three ways of partitioning the items into one singleton set and one group of two tied items, and each of these partitions gives two weak orders (one in which the singleton is smaller than the group of two, and one in which this ordering is reversed), giving six weak orders of this type. And there is a single way of partitioning the ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
Example of Kleene star applied to the empty set: ∅ * = {ε}. Example of Kleene plus applied to the empty set: ∅ + = ∅ ∅ * = { } = ∅, where concatenation is an associative and noncommutative product. Example of Kleene plus and Kleene star applied to the singleton set containing the empty string:
The set {A,A} is abbreviated {A}, called the singleton containing A. Note that a singleton is a special case of a pair. Note that a singleton is a special case of a pair. Being able to construct a singleton is necessary, for example, to show the non-existence of the infinitely descending chains x = { x } {\displaystyle x=\{x\}} from the Axiom ...
A constant function factors through the one-point set, the terminal object in the category of sets. This observation is instrumental for F. William Lawvere's axiomatization of set theory, the Elementary Theory of the Category of Sets (ETCS). [7] For any non-empty X, every set Y is isomorphic to the set of constant functions in .
For example, using x,y,z as variables, and taking f to be an uninterpreted function, the singleton equation set { f(1,y) = f(x,2) } is a syntactic first-order unification problem that has the substitution { x ↦ 1, y ↦ 2 } as its only solution. Conventions differ on what values variables may assume and which expressions are considered ...