When.com Web Search

  1. Ad

    related to: aromatic 4n+2 rule of probability worksheet 3

Search results

  1. Results From The WOW.Com Content Network
  2. Hückel's rule - Wikipedia

    en.wikipedia.org/wiki/Hückel's_rule

    3 H 23) are considered examples of a two π electron system, which are stabilized relative to the open system, despite the angle strain imposed by the 60° bond angles. [11] [12] Planar ring molecules with 4n π electrons do not obey Hückel's rule, and theory predicts that they are less stable and have triplet ground states with two ...

  3. Cyclooctadecanonaene - Wikipedia

    en.wikipedia.org/wiki/Cyclooctadecanonaene

    Notably, [18]annulene is the first annulene after benzene ([6]annulene) to be fully aromatic: its π-system contains 4n + 2 electrons (n = 4), and it is large enough to comfortably accommodate six hydrogen atoms in its interior, allowing it to adopt a planar shape, thus satisfying Hückel's rule. The discovery of aromatic stabilization for [18 ...

  4. Baird's rule - Wikipedia

    en.wikipedia.org/wiki/Baird's_rule

    [1] [2] The lowest triplet state of an annulene is, according to Baird's rule, aromatic when it has 4n π-electrons and antiaromatic when the π-electron count is 4n + 2, where n is any positive integer. This trend is opposite to that predicted by Hückel's rule for the ground state, which is usually the lowest singlet state (S 0).

  5. Möbius aromaticity - Wikipedia

    en.wikipedia.org/wiki/Möbius_aromaticity

    In contrast to the rarity of Möbius aromatic ground state molecular systems, there are many examples of pericyclic transition states that exhibit Möbius aromaticity. The classification of a pericyclic transition state as either Möbius or Hückel topology determines whether 4N or 4N + 2 electrons are required to make the transition state aromatic or antiaromatic, and therefore, allowed or ...

  6. Erich Hückel - Wikipedia

    en.wikipedia.org/wiki/Erich_Hückel

    The famous Hückel 4n+2 rule for determining whether ring molecules composed of C=C bonds would show aromatic properties was first stated clearly by Doering in a 1951 article on tropolone. [6] Tropolone had been recognised as an aromatic molecule by Dewar in 1945. In 1936, Hückel developed the theory of π-conjugated biradicals (non-Kekulé ...

  7. Cyclotetradecaheptaene - Wikipedia

    en.wikipedia.org/wiki/Cyclotetradecaheptaene

    Although the conjugated ring of [14]annulene contains 4n+2 electrons, it only exhibits limited evidence for being aromatic. It does not fully conform to Hückel's rule because none of its cis/trans isomers can adopt a completely planar conformation due to crowding of the interior hydrogens. [2]

  8. Aromaticity - Wikipedia

    en.wikipedia.org/wiki/Aromaticity

    The cyclobutadienide (2−) ion, however, is aromatic (6 electrons). An atom in an aromatic system can have other electrons that are not part of the system, and are therefore ignored for the 4n + 2 rule. In furan, the oxygen atom is sp² hybridized. One lone pair is in the π system and the other in the plane of the ring (analogous to C-H bond ...

  9. Hückel method - Wikipedia

    en.wikipedia.org/wiki/Hückel_method

    To summarize, we are assuming that: (1) the energy of an electron in an isolated C(2p z) orbital is =; (2) the energy of interaction between C(2p z) orbitals on adjacent carbons i and j (i.e., i and j are connected by a σ-bond) is =; (3) orbitals on carbons not joined in this way are assumed not to interact, so = for nonadjacent i and j; and ...