Search results
Results From The WOW.Com Content Network
An example of a nonlinear control system is a thermostat-controlled heating system. A building heating system such as a furnace has a nonlinear response to changes in temperature; it is either "on" or "off", it does not have the fine control in response to temperature differences that a proportional (linear) device would have.
Nonlinear management (NLM) is a superset of management techniques and strategies that allows order to emerge by giving organizations the space to self-organize, evolve and adapt, encompassing Agile, "evolutionary" and "lean" approaches, flextime, time banking, as well as many others. Key aspects of NLM, including holism, evolutionary design or ...
In control theory, backstepping is a technique developed circa 1990 by Petar V. Kokotovic, and others [1] [2] for designing stabilizing controls for a special class of nonlinear dynamical systems. These systems are built from subsystems that radiate out from an irreducible subsystem that can be stabilized using some other method.
Nonlinear systems are often analyzed using numerical methods on computers, for example by simulating their operation using a simulation language. If only solutions near a stable point are of interest, nonlinear systems can often be linearized by approximating them by a linear system using perturbation theory, and linear techniques can be used. [16]
For example, in case of aircraft control, a set of controllers are designed at different gridded locations of corresponding parameters such as AoA, Mach, dynamic pressure, CG etc. In brief, gain scheduling is a control design approach that constructs a nonlinear controller for a nonlinear plant by patching together a collection of linear ...
Nonlinear model predictive control, or NMPC, is a variant of model predictive control that is characterized by the use of nonlinear system models in the prediction. As in linear MPC, NMPC requires the iterative solution of optimal control problems on a finite prediction horizon.
System identification is a method of identifying or measuring the mathematical model of a system from measurements of the system inputs and outputs. The applications of system identification include any system where the inputs and outputs can be measured and include industrial processes, control systems, economic data, biology and the life sciences, medicine, social systems and many more.
In control systems, sliding mode control (SMC) is a nonlinear control method that alters the dynamics of a nonlinear system by applying a discontinuous control signal (or more rigorously, a set-valued control signal) that forces the system to "slide" along a cross-section of the system's normal behavior.