Search results
Results From The WOW.Com Content Network
The dual of a cube is an octahedron.Vertices of one correspond to faces of the other, and edges correspond to each other. In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. [1]
The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]
The triakis icosahedron is a Catalan solid, the dual polyhedron of the truncated dodecahedron. The truncated dodecahedron is an Archimedean solid , with faces that are regular decagons and equilateral triangles , and with all edges having unit length; its vertices lie on a common sphere, the circumsphere of the truncated decahedron.
For every convex polyhedron, there exists a dual polyhedron having faces in place of the original's vertices and vice versa, and; the same number of edges. The dual of a convex polyhedron can be obtained by the process of polar reciprocation. [34] Dual polyhedra exist in pairs, and the dual of a dual is just the original polyhedron again.
The great dodecahemicosacron is the dual of the great dodecahemicosahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small dodecahemicosacron. Since the hemipolyhedra have faces passing through the center, the dual figures have corresponding vertices at infinity; properly, on the real projective plane at ...
A Goldberg polyhedron is a dual polyhedron of a geodesic polyhedron. A consequence of Euler's polyhedron formula is that a Goldberg polyhedron always has exactly 12 pentagonal faces. Icosahedral symmetry ensures that the pentagons are always regular and that there are always 12 of them.
The rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Catalan solid, and the dual polyhedron of the icosidodecahedron. It is a zonohedron.
Duals of the ditrigonal polyhedra Small triambic icosahedron (Dual of small ditrigonal icosidodecahedron) — V(3.