When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Weight function - Wikipedia

    en.wikipedia.org/wiki/Weight_function

    The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

  3. Weighted arithmetic mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_arithmetic_mean

    The weighted mean in this case is: ¯ = ¯ (=), (where the order of the matrix–vector product is not commutative), in terms of the covariance of the weighted mean: ¯ = (=), For example, consider the weighted mean of the point [1 0] with high variance in the second component and [0 1] with high variance in the first component.

  4. Expected value - Wikipedia

    en.wikipedia.org/wiki/Expected_value

    Since the probabilities must satisfy p 1 + ⋅⋅⋅ + p k = 1, it is natural to interpret E[X] as a weighted average of the x i values, with weights given by their probabilities p i. In the special case that all possible outcomes are equiprobable (that is, p 1 = ⋅⋅⋅ = p k), the weighted average is given by the standard average. In the ...

  5. Weighted geometric mean - Wikipedia

    en.wikipedia.org/wiki/Weighted_geometric_mean

    In statistics, the weighted geometric mean is a generalization of the geometric mean using the weighted arithmetic mean.. Given a sample = (, …,) and weights = (,, …,), it is calculated as: [1]

  6. Inverse-variance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse-variance_weighting

    For normally distributed random variables inverse-variance weighted averages can also be derived as the maximum likelihood estimate for the true value. Furthermore, from a Bayesian perspective the posterior distribution for the true value given normally distributed observations and a flat prior is a normal distribution with the inverse-variance weighted average as a mean and variance ().

  7. Unit-weighted regression - Wikipedia

    en.wikipedia.org/wiki/Unit-weighted_regression

    In such a case, each predictor can be converted into a standard score, or z-score, so that all the predictors have a mean of zero and a standard deviation of one. With this method of unit-weighted regression, the variate is a sum of the z-scores (e.g., Dawes, 1979; Bobko, Roth, & Buster, 2007).

  8. Inverse distance weighting - Wikipedia

    en.wikipedia.org/wiki/Inverse_distance_weighting

    The assigned values to unknown points are calculated with a weighted average of the values available at the known points. This method can also be used to create spatial weights matrices in spatial autocorrelation analyses (e.g. Moran's I). [1]

  9. Design effect - Wikipedia

    en.wikipedia.org/wiki/Design_effect

    The modified formulae define the overall design effect using survey weights and population intracluster correlations. These formulae allow for insightful interpretations of design effects from various sources and can estimate intracluster correlations in completed surveys or predict design effects in future surveys. [citation needed]