Search results
Results From The WOW.Com Content Network
Edit distance matrix for two words using cost of substitution as 1 and cost of deletion or insertion as 0.5. For example, the Levenshtein distance between "kitten" and "sitting" is 3, since the following 3 edits change one into the other, and there is no way to do it with fewer than 3 edits: kitten → sitten (substitution of "s" for "k"),
In general, a distance matrix is a weighted adjacency matrix of some graph. In a network, a directed graph with weights assigned to the arcs, the distance between two nodes of the network can be defined as the minimum of the sums of the weights on the shortest paths joining the two nodes (where the number of steps in the path is bounded). [2]
In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points x 1 , x 2 , … , x n {\displaystyle x_{1},x_{2},\ldots ,x_{n}} in k -dimensional space ℝ k , the elements of their Euclidean distance matrix A are given by squares of distances between them.
Wasserstein metrics measure the distance between two measures on the same metric space. The Wasserstein distance between two measures is, roughly speaking, the cost of transporting one to the other. The set of all m by n matrices over some field is a metric space with respect to the rank distance (,) = ().
The distance (or perpendicular distance) from a point to a line is the shortest distance from a fixed point to any point on a fixed infinite line in Euclidean geometry. It is the length of the line segment which joins the point to the line and is perpendicular to the line. The formula for calculating it can be derived and expressed in several ways.
The latter may occur even if the distance in the other direction between the same two vertices is defined. In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path ...
The closeness between two matrices of the same size can be defined in several ways. The Euclidean distance, and the Kullback-Leibler divergence are two well-known examples. The NM-method is consistent with a definition relying on the ordinal Liu-Lu index [3] which is the slightly modified version of the Coleman-index defined by Eq.
This result generalises the earlier example of the Wasserstein distance between two point masses (at least in the case =), since a point mass can be regarded as a normal distribution with covariance matrix equal to zero, in which case the trace term disappears and only the term involving the Euclidean distance between the means remains.