Search results
Results From The WOW.Com Content Network
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Strength of Materials (Russian: Проблемы прочности) is a bimonthly peer-reviewed scientific journal covering the field of strength of materials and structural elements, mechanics solid deformed body.
The linear relationship for a material is known as Young's modulus. Above the yield point, some degree of permanent distortion remains after unloading and is termed plastic deformation. The determination of the stress and strain throughout a solid object is given by the field of strength of materials and for a structure by structural analysis.
A typical stress–strain curve for a brittle material will be linear. For some materials, such as concrete, tensile strength is negligible compared to the compressive strength and it is assumed to be zero for many engineering applications. Glass fibers have a tensile strength greater than that of steel, but bulk glass usually does not.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
This material exhibits an ultra-high hardness, higher than any reported ultrafine-grained nickel. The exceptional strength is resulted from the appearance of low-angle grain boundaries, which have low-energy states efficient for enhancing structure stability. Another method to stabilize grain boundaries is the addition of nonmetallic impurities.
Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength. [1] In geotechnical engineering it is used to define shear strength of soils and rocks at different effective stresses.
The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.