When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Microsoft Excel - Wikipedia

    en.wikipedia.org/wiki/Microsoft_Excel

    Use of a user-defined function sq(x) in Microsoft Excel. The named variables x & y are identified in the Name Manager. The function sq is introduced using the Visual Basic editor supplied with Excel. Subroutine in Excel calculates the square of named column variable x read from the spreadsheet, and writes it into the named column variable y.

  3. Spreadsheet - Wikipedia

    en.wikipedia.org/wiki/Spreadsheet

    Also, programs can be written that pull information from the worksheet, perform some calculations, and report the results back to the worksheet. In the figure, the name sq is user-assigned, and the function sq is introduced using the Visual Basic editor supplied with Excel. Name Manager displays the spreadsheet definitions of named variables x & y.

  4. List of random number generators - Wikipedia

    en.wikipedia.org/wiki/List_of_random_number...

    A modification of Lagged-Fibonacci generators. A SWB generator is the basis for the RANLUX generator, [19] widely used e.g. for particle physics simulations. Maximally periodic reciprocals: 1992 R. A. J. Matthews [20] A method with roots in number theory, although never used in practical applications. KISS: 1993 G. Marsaglia [21]

  5. Counter-based random number generator - Wikipedia

    en.wikipedia.org/wiki/Counter-based_random...

    We can think of a pseudorandom number generator (PRNG) as a function that transforms a series of bits known as the state into a new state and a random number. That is, given a PRNG function and an initial state s t a t e 0 {\displaystyle \mathrm {state} _{0}} , we can repeatedly use the PRNG to generate a sequence of states and random numbers.

  6. Mersenne Twister - Wikipedia

    en.wikipedia.org/wiki/Mersenne_Twister

    The Mersenne Twister is a general-purpose pseudorandom number generator (PRNG) developed in 1997 by Makoto Matsumoto (松本 眞) and Takuji Nishimura (西村 拓士). [1] [2] Its name derives from the choice of a Mersenne prime as its period length. The Mersenne Twister was designed specifically to rectify most of the flaws found in older PRNGs.

  7. Multiply-with-carry pseudorandom number generator - Wikipedia

    en.wikipedia.org/wiki/Multiply-with-carry...

    This is the same as a generator with multiplier b, but producing output in reverse order, which does not affect the quality of the resultant pseudorandom numbers. Couture and L'Ecuyer [ 3 ] have proved the surprising result that the lattice associated with a multiply-with-carry generator is very close to the lattice associated with the Lehmer ...

  8. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8]. A linear congruential generator (LCG) is an algorithm that yields a sequence of pseudo-randomized numbers calculated with a discontinuous piecewise linear equation.

  9. Cryptographically secure pseudorandom number generator

    en.wikipedia.org/wiki/Cryptographically_secure...

    In the asymptotic setting, a family of deterministic polynomial time computable functions : {,} {,} for some polynomial p, is a pseudorandom number generator (PRNG, or PRG in some references), if it stretches the length of its input (() > for any k), and if its output is computationally indistinguishable from true randomness, i.e. for any probabilistic polynomial time algorithm A, which ...