Search results
Results From The WOW.Com Content Network
In deriving the Schwarzschild metric, it was assumed that the metric was vacuum, spherically symmetric and static. The static assumption is unneeded, as Birkhoff's theorem states that any spherically symmetric vacuum solution of Einstein's field equations is stationary ; the Schwarzschild solution thus follows.
Christoffel symbols satisfy the symmetry relations = or, respectively, =, the second of which is equivalent to the torsion-freeness of the Levi-Civita connection. The contracting relations on the Christoffel symbols are given by
Symbolab is an answer engine [1] that provides step-by-step solutions to mathematical problems in a range of subjects. [2] It was originally developed by Israeli start-up company EqsQuest Ltd., under whom it was released for public use in 2011.
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
This fact has a widely application, such as to analytically distort a Schwarzschild black hole. We employed the axisymmetric Laplace and gradient operators to write Eqs(7.a-7.e) and Eqs(8.a-8.d) in a compact way, which is very useful in the derivation of the characteristic relation Eq(7.f).
1. Search your inbox for the subject line 'Get Started with AOL Desktop Gold'. 2. Open the email. 3. Click Download AOL Desktop Gold or Update Now. 4. Navigate to your Downloads folder and click Save. 5. Follow the installation steps listed below.
The Lie derivative is another derivative that is covariant under basis transformations. Like the exterior derivative, it does not depend on either a metric tensor or a connection. The Lie derivative of a type ( r , s ) tensor field T along (the flow of) a contravariant vector field X ρ may be expressed using a coordinate basis as [ 20 ]
The Kretschmann scalar and the Chern-Pontryagin scalar. where is the left dual of the Riemann tensor, are mathematically analogous (to some extent, physically analogous) to the familiar invariants of the electromagnetic field tensor