When.com Web Search

  1. Ads

    related to: nonlinear partial differential equation system

Search results

  1. Results From The WOW.Com Content Network
  2. Nonlinear partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_partial...

    In mathematics and physics, a nonlinear partial differential equation is a partial differential equation with nonlinear terms.They describe many different physical systems, ranging from gravitation to fluid dynamics, and have been used in mathematics to solve problems such as the Poincaré conjecture and the Calabi conjecture.

  3. List of nonlinear partial differential equations - Wikipedia

    en.wikipedia.org/wiki/List_of_nonlinear_partial...

    See also Nonlinear partial differential equation, List of partial differential equation topics and List of nonlinear ordinary differential ... Integrable systems:

  4. System of differential equations - Wikipedia

    en.wikipedia.org/wiki/System_of_differential...

    A differential system is a means of studying a system of partial differential equations using geometric ideas such as differential forms and vector fields. For example, the compatibility conditions of an overdetermined system of differential equations can be succinctly stated in terms of differential forms (i.e., for a form to be exact, it ...

  5. Partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Partial_differential_equation

    In mathematics, a partial differential equation (PDE) is an equation which involves a multivariable function and one or more of its partial derivatives.. The function is often thought of as an "unknown" that solves the equation, similar to how x is thought of as an unknown number solving, e.g., an algebraic equation like x 2 − 3x + 2 = 0.

  6. Nonlinear system - Wikipedia

    en.wikipedia.org/wiki/Nonlinear_system

    In mathematics and science, a nonlinear system (or a non-linear system) is a system in which the change of the output is not proportional to the change of the input. [1] [2] Nonlinear problems are of interest to engineers, biologists, [3] [4] [5] physicists, [6] [7] mathematicians, and many other scientists since most systems are inherently nonlinear in nature. [8]

  7. Primitive equations - Wikipedia

    en.wikipedia.org/wiki/Primitive_equations

    The primitive equations are a set of nonlinear partial differential equations that are used to approximate global atmospheric flow and are used in most atmospheric models. They consist of three main sets of balance equations: A continuity equation: Representing the conservation of mass.

  8. Breather - Wikipedia

    en.wikipedia.org/wiki/Breather

    A breather is a localized periodic solution of either continuous media equations or discrete lattice equations. The exactly solvable sine-Gordon equation [1] and the focusing nonlinear Schrödinger equation [2] are examples of one-dimensional partial differential equations that possess breather solutions. [3]

  9. Navier–Stokes existence and smoothness - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_existence...

    In mathematics, the Navier–Stokes equations are a system of nonlinear partial differential equations for abstract vector fields of any size. In physics and engineering, they are a system of equations that model the motion of liquids or non-rarefied gases (in which the mean free path is short enough so that it can be thought of as a continuum mean instead of a collection of particles) using ...